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1. Introduction, 

If 5 is the position vector of an a r t i f i c i a l  s a t e l l i t e  of an 

oblate planet, relative t o  the l a t t e r ' s  center of mass, the drag-free 

motion of the sa t e l l i t e  is determined by the differential  equation 

Here the gravitational potential V of the planet is expressible as an 4 

expansion in  spherical harmonics 1 

03 r e n  v = - E p - c ( --) J P (sine)] + t e s s e N  ha~nnonics (2) n n  n=2 r 

where r = 1.1, 6 is the declination, 

is the n ' th Legendre polynomial, and 

re is the equatorial radius, Pn 

p = GM, the product of the gmv- 

N 

i t a t iona l  constant and the mass o f t h e  planet. Besides the drag, Eqs.  

(1) and (2) neglect the lunar-solar perturbation and all non-gravita- 

t iona l  forces. The cQnstants Jn are pure numbers characterizing the 
- 
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planet's potential, with J2 = ,(1.08)10-~ f o r  the Earth and with a l l  

the other Jn's of the order lom6 o r  smaller. 

2. Possible Reference Orbits. 

Most approaches t o  the problem of solving (1) and (2) f o r  the orbit 

have begun with replacing V by Vo E -p/r and finding the perturba- 

tions of the resulting e l l i p t i c  orbit ,  produced by the higher harmonics. 

Sterne( 1957,1958) and Garfinkel( 1958,1959) both began with potentials 

of the form V = f(r,e), taking into account part of the effect of the 

second harmonic. 

ing intermediate o r  reference orbit changes with t i m e .  

Further progress then depends on finding how the result- 

To take advantage of our hawledge of the actual shape of the earth, 

or of any oblate planet more closely resembling an oblate spheroid than 

a sphere, the author ( V i n t i  1g59ar 195%) decided t o  t r y  oblate spheroidal 

coordinates. 

spheroidal coordinates 

If X, Y, and 2 are the usual rectan@;ular coordinates, these 

p, q, and !$ are defined by the equations 

(3.1) 2 2  2 1  x + i Y  = r c o s w i #  = [ ( p  +c ) ( l - r )  )12expi$ 

z = rsine = pq (3.2) 

Here c is  an adjustable distance, sma l l  compared t o  re. 

p -. r and r )  + sine. The surfaces p = constant are oblate -spheroids, 

For large r, 

approaching sphericity as p increases, and the surfaces' Q = constant 
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are hyperboloids, asymptotic t o  the cones e = constant. 

With the hope of obtaining a more accurate reference orbit as a 

starting point for the C a l C u L t L t i c m  of satell ite orbits, the author 

wrote out the Hamilton-Jacobi equation i n  these coordinates, finding 

that it would be separable i f  V has the genersl. form 

(4) 

On imposing the requirement that V' shall be a solution of Laplace's 

equation V2 V' = 0 and that this solution shall be non-singular on 

the Z-axis, one finds that the fluctions f(p) and g(r) )  can only be 

Placing the origin a t  the center of mass then makes b2 = 0 and reqpir- 

ing V' t o  have the form -p/r at large r makes bl = -p . Then 

V' =- *= -@(e + i C &  

P rl 

The eaansion of V' i n  zonaJ. hamonics 
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then shows that V'  agrees with V through the second harmonic i f  

2 2  c = r  J e 2  

3 With such a choice f o r  c, we also find that J4 = -4, J g  J2, ... 
Since observations shuw that Jk 

represents about two-thirds of the fourth harmonic. 

-1.5 4, it follows that  V' also 

It follows that 

V' accounts f o r  about 99.5s of the departure of V from the simple 

value -p/r that would hold fo r  a spherically symmetric planet. In 

other words the geoid constructed V' never departs f r o m  the 

actual sea-level surface by more than a few hundred feet .  

more, Weinacht(1924) proved that the motion of a particle i n  Euclid- 

ean space is  either a Staeckel system o r  reducible t o  a Staeckel 

Further- 
,&y -I 41.- 

n 

system by a point transformation. Of the eleven systems of COOP 

dinates in which Staeckel systems may be expressed,the oblate spheroi- 

dal has the most appropriate symmetry. Furthermore, Eq.(6) is the 

m o s t  flexible solution of kplace 's  equation i n  this system that leads 

t o  separability. 
2 2  par t ic le  moving; i n  the potential f ie ld  (6), with c = re J2, i s  the 

best possible reference orbit that can be chosen, from the point of 

It therefore appears l ikely that the orbit of a 

view of accuracy of fit t o  the actual orbit without perturbation theory. 

3. The Quad ratures 

If a,, is the energy, 

9 a separation constant that would reduce t o  the t o t a l  angular 

the aJdal camponent of angular momentum, "3 
and 
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momentum i n  the Keplerian case c= 0, then with the potential (6) the 

Haailton- Jacobi equation separates, with a solution 

If pl, p2, and are constants, such that i n  the K e p l e r i a n  case -pa 3 
would be the time of passage through perigee, p2 the argument of perigee, 

and p the ri& ascension of the node, the coordinates p, q, and 0 are 

given by 
3 

0 

0 Pl 

(10.1) 

Here 
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4. Factoring the Quartics [For references on Sects. 4,5, and 6, see 
Vinti 196lb, 1961c, and 1962 ] 

Finding the coordinates as functions of the time depends on invert- 

ing EqS. (10.1) and (10.2) to obtain p and Q in terms of t and then 

inserting the results into (10.3) t o  obtain 4 
first evaluate the above integrals and this evaluation requires factor- 

ing the quartics F(p) and G ( q ) .  

To do this we must 

1 We may define constant orbital elements a. E 4 2 0 5 ,  eo=(1+2c5c5/p 2 . 2 z  ) , 

and i E cos-’(ada$, fil,&b, that can be obtained directly from initial 

conditions. 

,? without difficulty. A somewhat better set of elements is a,e,I,fil, 

0 

In this xay we can factor G ( 7 )  exactly and F(p) through order 

2 

b2, b,, introduced by 1zsak (19W. %re 4(p1+p2), ea (p2-p1)l(p2+4), 

-1 
c 

and I = sin qo . The quantities %,%,% A,B, and v2 can all be 
expressed in terms of these elements, so that the latter lead to an exact 

factorization of F(p) . 
tions by numerical solution of F(p) = 0, but they can be determined with- 

These elements can be obtained from initial c-i- 

out such a procedure by iterated least-square fitting to an observed orbit. 



5 .  Evaluating the Integrals 

The integrals i n  (10.3) can be earessed as incomplete e l l i p t i c  

integrals of the third kind anB those in (10.1) and (10.2) as in- 

cumplete e l l i p t i c  integrals of the first and second kinds. It is 

simpler, hmever, t o  avoid such a fbmulation. 

the unifomizing variables E, v, $, and X, defined by 

W o s e  we introduce 

Here E and v are analogous,respectively,to the eccentric and true 

anomalies 

t o  the projection of the orbi ta l  BSC on the equator. 

i n  e l l i p t i c  motion, $ t o  the argument of latitude, and 

By using an 

X 

I 

expansion i n  Legendre polynomials with argument -3 AB-%, vie. , 

n=O 

we can eqpmss the p-integrals 5, s, R occurring respectively 3’ 
in   io^), (10.2)~ and (10.3)~ in the forms 

... 

1 2 
(-2O4)’5 = -4 AE + a(E-esinE)+ Aiv + AJj s w v  (14.1) 

j=1 



Q - v- 

I 
(-&l)2 R3 = A v + !$ A3j sinjv 

j=1 

Here the coefficients 4_, %, and A are infinite series, leading t o  

an exact evaluation of secular effects for the reference orbit, and 

the sine terms are carried far enough t o  give perlodic eff'ects tbrough 

order 4. 

3 

We can express the corresponding r)- integrals as 

N3 = C3X + \$ + C 32 sin2q3 (15.3) 

Here C1 and C2 are expressible i n  terms of the complete e l l i p t i c  -. 

i n t e e s  K ( V ~ / ~ ~ )  and E ( ~ J Q )  and N in terms of an inf ini te  series. 3 
The results f o r  $he r)- integrals are thus also 

secular effects exactly fo r  the reference orbit  

tbmugh order 3 ' 2 .  

accurate enough t o  give 

and periodic effects 
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6. Solution of the Kinetic Equations (10) 

One then inserts (a) and (15) into Eqs. (10.1) and (10.2), ?lac- 

ing 

E = M  + E  V = M s + v  $ = #s + #p (16) S P  P 

The secular terms Ms and #s are  then found by dropping E p Y  VPY $p 

and the sine terms i n  (10.1) and (10.2) and solving a p a i r  of l inear 

algebraic equations. 

uct of 2w1 and a linear M c t i o n  of t + Pl ; the s e c m  tern $, is  

the product of 2w2 and a -ear function of t + P2. He= v1 and v2 

are, respectively, the mean p-frequency a%/ajl and the mean pfrequency 

a5/aj2,  j, and j, being the corresponding action yariables(Vinti 1961a). 

The secular mean anomaly Ms appears as the prod- 

One then expresses the periodic terms as 

E = E o + E  + E 2  v = vo t v1 + v2 $p = $0 + #I + $2 Y (17) P 1 P 

where E ny 

# = $o into (lo), rejecting periodic terms of E = Eo’ vp = vOy 

order 

l,b0. 

e.g.y denotes a periodic part  of order $. One then places 

3 P 
J or higher, and solves (10.1), (10.2), and (12.1) for  Eo, voy and 
2 -. 

Here M + Eo appears as the solution of the Kepler equation 
S 

M S + Eo - e’sin(Ms + Eo) = Ms 

e’  H “/ao < e 

(18.1) 

(18.2) 
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One continues by adding in the terms El, vly and $, into EqS.(lO), 
.L 

rejecting only those periodic terms of order $ or higher. 

M + Eo + 5 satisfies a similar Kepler eqution, the right side 

Then 

S 

getting an additional term 5, periodic of order J2, depending on 

vo and $s + $o. 

fledged solution, but may be solved by a differential. method. 

This second Kepler equation does not require a full- 

Knuw- 

ing El, one xnay then use (12.1) t o  find vl and (10.2) to find #l . 
One continues i n  a similar fashion t o  find E2, v2, and G2. For 

the reference orbit the secuLar parts of E, v, and $ are then h a m  

exactly and the short-periodic parts through order 4. There are no 
long-periodic terms in t h i s  solution f o r  the reference orbit. 

F,qs. (12.1) and (12.2) then give the spheroidal coordinates p 

and q. 

after insertion of $ into (12.3) t o  find 

t ion fo r  the reference orbit. 

me  right ascension 4 follows from (10.3), (14.3), and (15.3), 

x. This completes the solu- 

7. A Sketch of the Necessary Perturbation Theory 

If we subtract (7) f r o m  (2), we find that the part  Of the gravita- 

t iona l  potential not accounted for in the reference orbit i s  given by 
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As an example, we consider here only the residual fourth harmonic, SO 

that the perturbing term in the Hamiltonian becanes 

If' we use the formulas of e l l i p t i c  motion f o r  r and 6, v i z ,  

r = a(1-ecosE) = 

sine = sinIsin(v 

a ( l  - e21 
1 + ecosv 

+ P2) 

the perturbation H' w i l l  be correct through order 3'2. 
accuracy w i l l  result  i n  secular and short-periodic changes correct 

through order 4 and long-perlodic terms correct through order J2. (It 

is well t o  emphasize at this point that t h i s  order of accuracy i s  f o r  

effects produced by less  than 0.5s of the departure of the planet form 

sphericity; for the 99.5% of this  departure already accounted f o r  by 

the potential (7) the secular effects are exact and long-geriodic effects 

do not exist.) 

This order of 

In doing the perturbation theory, the first canonical variables - 
that come t o  mind are the Jacobi "constants" 5, %, 5, Pl, p2, and p,. 

Their shortcomings are well known, huwever, since they lead t o  Poisson 

terms in The next set that comes t o  m i n d  is the one gen- 5 and % . 
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erated from the a's and B's by the generating f'unction 

3 

If we define x+, by 

p = rl; *; , 

this leads t o  the se t  

os @3 ' 

canonical with respect t o  the Hamiltonian 

H = -p2/2L 2 + H' 

One may attempt t o  apply the von Zeipelmethod in  the way success- 

m y  used by B r o m r  (1959), first eliminating short-periodic terms 

and then proceeding t o  eliminate long-periodic terns. 

huwever, that the corresponding generating f'unction SI , which ought t o  

be of the first order i n  the parameter 

~ 

One then finds, 
* 

u , J 4 + $  (27) 
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m u s t  satisfy 

One may alternatively eliminate short-periodic and long-periodic terms 

simultaneously, but one then obtains a Poisson term of the form 

v'sin2B; 

would appear absurd, since the "constant" 

a small periodic variation, would then became infinite.  

in % - OL; . Since v' has a secular part, such a result 

a+ which ought t o  have only 

These diff icul t ies  

aze examples of the failure of the von Zeipel method whenever the follow- 

ing conditions both hold: - 
(1) 

order in the perturbation parameter 0, and 

are such that the unperturbed Hamiltonian depends only on L. 

the perturbation has a long-periodic part  of the first 

(2) the canonical variables 

The following set, hmever, i s  successful. If' j,, j2,d j3 are 

the action variables and i f  wl, w2, and w are the corresponding angle 

variables, we define 
3 

L, G, H, a, g, and h by 

27rL = j, + + a = 2w1 
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= f 1 respectively for a direct orbit or a retrograde orbit. 
sQn 3 where 

To verif'y that they are cano";Lcel, xmte that 

m+Gdg+ 

They were introduced 

Hah = jldWl + j2aw2 + J dw 
3 3  

by Izsak (1962) in his application of the author's 

theory t o  the problem of the c r i t i ca l  inclination. 

re 

the B's are then given by 

The constant orbitaJ. elements in the perturbed problem then become the 

constant parts a", e", and 

values 

of aye, and 770 , along with the initial-- 

A6 , g;, and h; of the secula;rp&s of A, g, and h. 

Tke corresponding Hamiltonian F is given by 

F = Fo(L, G, H) + F1 
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where 

* z  a i  L =  

One cannot express the unperturbed 

function of L, G, and H, but it i s  

only the derivakives 

IL A. 

Fi =: -Hi 

Bamiltonian Fo = -% exactly as a 

not necessaryto do so. One needs 

On applying the von Zeipel method, one first carries through the 

Proceed- shrple but tedious elimination of the short-periodic terms. 
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ing t o  the long-periodic terms, one finds that the appropriate gen- 

crating ITunction Si(L1: GI1? E> g' )  ~1st S & ~ ~ Q T  
* 

leading t o  

w h e r e  f is  a certain function of L', G", and H. Since VI; - vl is 

proportional t o  1=5$/Gtt2 M 1-5cos I, this leads t o  the familiar 

resonance denominator, whenever Ck J + 4 # 0 . Since U/(vi-v;)= O( J2), 

2 

4 
the long-periodic terms are accurate through order J2. 

After finding the above canonical variables as functions of t i m e ,  

and h( t )  into Eqs.(lO), one then can find, by differential  methods, the 

changes i n  E, v, $, and x, and thus in the coordinates, that are produced 
-. 

by the perturbation. It is not necessary t o  do a ccarrplete =-inversion 

of (10.1) and (10.2). 
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